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A New Paradigm for Turbulence Control for Drag Reduction

Mahmoud I. Hussein∗ and Sedat Biringen†

Department of Aerospace Engineering Sciences,

University of Colorado Boulder, Boulder, Colorado 80309, USA

Abstract

Direct numerical simulations (DNS) of spanwise-rotating turbulent channel flow as well as the

neutral and unstable turbulent Ekman layer were conducted. These DNS results were used to

evaluate various turbulence and heat transfer models for the Reynolds stresses, turbulent heat

fluxes and higher-order moments of velocity and temperature. Explicit Algebraic Reynolds Stress

Models (EARSM) obtained the Reynolds stress distributions in best agreement with DNS data for

rotational flows and turbulent heat flux distributions obtained from two explicit algebraic heat flux

models consistently displayed increasing disagreement with DNS data with increasing rotation rate.

DNS results were also used to determine the proper computational box size for a minimal flow unit

(MFU) at Rob = 0.5, spanwise arrays of Taylor-Gortler vortices in the highly turbulent pressure

region were examined and complete realization of the vortices was demonstrated to be necessary

for accurate MFU turbulence statistics requiring a minimum spanwise domain length Lz = π. For

the neutrally stratified Ekman layer, the higher-order moments of velocity were examined and

the accuracy of a kurtosis model was assessed. For the unstable Ekman layer, the analysis of

higher-order moments was extended to temperature-velocity correlations. Model coefficients were

optimised using DNS data and it was shown that the optimised models accurately captured the

distributions of all fourth-order moments. These flow fields represent complex turbulence which

will be subject to flow and heat transfer control by phonons at a later stage of our work. Research

aimed at the control of fully turbulent channel flow using direct numerical simulation (DNS) was

also conducted. The reduction of the kinetic energy of large amplitude perturbations in channel

flow was investigated using passive phononic (periodic) structures. These studies, and the results

obtained, lay the foundation for extending the phononic subsurface passive control methodology

to turbulent drag in channel flows. Results from this seed grant have appeared in three journal

articles and have been accepted for presentation at national conferences.
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I. RESEARCH

Several different research endeavors were conducted, all involving the integration of the

time-dependent Navier-Stokes equations using direct numerical simulation (DNS).

A. Spanwise-Rotating Turbulent Channel Flow and Modeling

Turbulent channel flow subject to rotation in the spanwise direction is characterized by

reduced turbulence levels near one wall and elevated turbulence levels near the opposite wall;

these regions are known as the suction and pressure sides, respectively1. Subsequently, the

symmetric profiles of mean velocity and Reynolds stress distributions in the non-rotating

channel become asymmetric with respect to the channel centerline. The effects of spanwise

rotation on momentum transport in turbulent channel flow has been well documented in

previous direct numerical simulation (DNS) studies by Grundestam et al.1 and Wu and

Kasagi2. Rotation-induced body forces (Coriolis, centrifugal) generate a secondary cross

flow, and consequently a particular type of complex turbulent flow regime is developed with

more than one mean flow gradient. The analyses of such complexities on the structure

and parameterization of turbulence have relevance to engineering applications such as gas

turbine blade and rotating turbomachinery design, especially with regards to surface heat

transfer and skin friction within the internal cooling passages3,4.

For the research conducted and published in Hsieh, Biringen, and Kucala 5 , DNS was

employed to assess four RANS models proposed by (a) Reif et al.6 (PRDO), (b) Speziale

and Gatski7 (SG), (c) Girimaji8 (GI) and (d) Grundestam et al.9 (GWJ). Two algebraic heat

flux models proposed by (e) Younis et al.10 (YWL) and (f) Abe and Suga11 (SA) were also

evaluated. In addition, the pressure-strain functions proposed in Speziale and Gatski 7 and

Girimaji 8 were investigated for their influence on the modeled Reynolds stress distributions.

For spanwise-rotating turbulent channel flow, the Reynolds stress distributions produced

from a linear and nonlinear eddy viscosity model were compared to demonstrate improved

accuracy for the nonlinear model over the linear model. In a comparison of four nonlinear

eddy viscosity models with DNS data, EARSM were the most compatible with DNS results
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in modeling the Reynolds stresses for turbulent channel flow subject to spanwise rotation.

The Speziale-Gatski model was shown to be the most compatible for zero and low rotation

numbers but displayed significant deviations near the pressure wall at high rotation numbers.

As shown in figure 1, the Grundestam-Wallin-Johansson model showed the best agreement

with the DNS data at high rotation numbers. Heat flux models were in good agreement

with DNS data for the no-rotation case but with system rotation, the models deviated from

the DNS, increasing at higher rotation rates.
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The pressure-strain models of two EARSM (Girimaji, SG) were shown to have significant

disagreements with the DNS data in the near-wall regions and the pressure-temperature-

gradient models of two EAHFM (YWL, SA) demonstrated inaccurate characterization of

the suction region with system rotation. The errors in the modeled contributions from

these terms resulted in degeneration of the predictive capabilities of their respective closure

models. These errors contributed to inaccurate Reynolds stress amplitudes in the near-wall

regions and an inaccurate modeled distribution shape for wall-normal turbulent heat flux

in EARSM and EAHFM, respectively. Present results indicate correct characterization of

pressure fluctuations is a crucial factor in both EARSM and EAHFM design for spanwise-
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FIG. 2: Three-dimensional contours of time-averaged v and w velocity for Rob = 0.5. Dark

and light contours denote clockwise and counter-clockwise motion, respectively.

rotating turbulent channel flow.

B. Spanwise-Rotating Turbulent Channel Flow and the Minimal Flow Unit

For spanwise-rotating turbulent channel flow, the streaky and vortical structures associ-

ated with the turbulence sustenance cycle12,13 persist in the pressure region and the gener-

ation of additional turbulence structures was observed in the rotational turbulence studies

of Kristofferson and Andersson 14 and Grundestam et al. 1 . In figure 2, one example of the

rotation-induced flow instabilities, known as roll cells, are shown to circulate flow throughout

the pressure region of the chnnel.

In order to determine the dimensions of a minimal flow unit, it is imperative to examine

the contributions of these rotation-induced structures to turbulence. The concept of the min-

imal flow unit (MFU) model is based on the determination of the smallest computational box

size that will produce acceptably accurate turbulence statistics at minimal computational

cost. As the dependence of turbulence production on the interactions of various turbulence

structures has been well documented in literature13,15, MFU design distinguishes a basic

set of structures necessary to sustain turbulence and constructs a shorter domain based on

this array of structures. A model’s success is determined by its ability to accurately predict

essential turbulence statistical quantities at a significantly reduced computational cost com-
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FIG. 3: Three-dimensional contours of time-averaged v and w velocity for MFU simulation

case at Rob = 0.5. Dark and light contours denote clockwise and counter-clockwise motion,

respectively.

pared to full direct numerical simulation (DNS) on a well-resolved computational domain.

Such MFU models are necessary for computational fluid dynamics research requiring large

amounts of simulations such as parametric studies for flow control16,17. For the research

conducted and published in Hsieh and Biringen 18 , the DNS database for turbulent channel

flow, subject to varying rotation and Reynolds numbers, was used to assess the accuracy of

the MFU model for predicting low and high-order moments of turbulent fluctuations.

For the design of a minimal flow unit for rotational turbulence, a baseline MFU model

with spanwise domain length of Lz = πδ was selected to accomodate a single full pair of

Taylor-Gortler vortices as shown in figure 3. A box minimization study with reduced span-

wise domain lengths down to Lz = 0.18πδ, the MFU length for the non-rotating turbulent

channel flow, was conducted. Observed discrepancies in the mean velocity distributions

demonstrated that MFU accuracy did not depend on sublayer streak distance as for the

non-rotational channel and a significantly larger minimum spanwise length Lz = πδ was

required for accurate turbulent statistics, corresponding to the minimum length for proper

realization of one full pair of Taylor-Gortler vortices. If these vortices were inaccurately

represented from further truncation of the spanwise domain length, turbulent fluctuations

were inaccurate or an incorrect mean velocity gradient was produced in the pressure region.
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For a higher-Reynolds number, the MFU model demonstrated decreased accuracy com-

pared to the low-Reynolds simulation. Hence for large Reynolds numbers, MFU models

may require a significantly larger domain box to accurately approximate turbulence statis-

tics and alternative factors for MFU design require consideration, such as Reynolds number

effects on sublayer streak length and turbulence structures in the suction region. To test

the limitations of the MFU model, higher-order statistics from the baseline MFU model

were compared to those from the full simulations. The model produced accurate distri-

butions of skewness and kurtosis for a non-rotating channel but was unable to maintain

this accuracy with rotation in the suction region. The MFU model accurately captured

higher-order statistics in the pressure region due to the successful realization of roll cells but

could not properly capture the re-laminarized suction region which contained intermittent

high-amplitude velocity fluctuations, a consequence of the turbulent spots structures. These

findings indicated that when the MFU model was extended beyond its intended function

of general turbulence quantities (mean velocity, Reynolds stresses) to higher-order statis-

tics, the model continued to perform well in regions of high turbulence due to its ability to

capture the coherent structures which contribute to turbulence production. However, the

model failed in regions with different physical dynamics such as the low-turbulence suction

region.

C. Ekman Layer Flow and Modeling

The Ekman layer19 is a boundary layer formed by pressure gradients in a rotating

system20. With a heated surface (convective boundary layer) and capped inversion, the Ek-

man layer is often used to model the complex dynamics of the atmospheric boundary layer

(ABL) such as buoyant forcing and effects of Coriolis forces due to the Earth’s rotation21,22.

Similar to the turbulent channel problem, turbulence closure models that consider time-

averaged equations with phenomenological closure approximations are highly desirable if

they can accurately parameterise turbulent transport.

For the research conducted and published in Waggy, Hsieh, and Biringen 23 , the DNS

database under both neutral and unstable conditions was utilized to assess closure models

used for predicting high-order moments of turbulence and temperature fluctuations as a

function of lower-order correlations. The higher-order moments of skewness and kurtosis
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in the turbulent Ekman layer were examined; an assessment of a model proposed by Mole

and Clarke 24 for the kurtosis was also provided. For the unstable Ekman layer, analysis of

higher-order moments was extended to temperature-velocity correlations, and two closure

models by Zilitinkevich et al. 25 and Gryanik and Hartmann 26 were evaluated.

Evaluation of the DNS results with previous similar studies27,28 showed strong agreement,

lending validity to the simulation results used for turbulence modeling. The higher-order

moments of skewness and kurtosis were introduced in the case of a neutrally stratified

Ekman boundary layer and a model proposed by Mole and Clarke 24 for the kurtosis was

evaluated. An analysis of two separate sets of coefficients proposed for the model by Tampieri

et al. 29 and Alberghi et al. 30 demonstrated that the coefficients proposed by Alberghi et al. 30

generally had better agreement with the DNS data. In the case of an unstratified Ekman

boundary layer, two closure models by Zilitinkevich et al. 25 and Gryanik and Hartmann 26

approximated third and fourth-order moments of velocity and temperature as a function of

lower order moments as well as the skewness and kurtosis. A parametric study using the

explained variance (σ2
f ) was conducted to assess the accuracy of the coefficients proposed

by each of these models and propose a new set of coefficients that would maximise σ2
f . The

computed model coefficients that maximised σ2
f did well in accurately capturing the trend

of all fourth-order moments as well as some third-order moments.

D. Flow Control: Channel Flow

Flow control in regards to jet turbines has been a subject of great interest in recent years.

Turbulence is an impediment to effective turbine design due to its flow regime consisting

of chaotic property changes and instabilities, leading to undesirable results such as higher

drag and energy losses31. Flow control is also a major topic of research for friction drag

reduction which too is directly connected to instabilities32. Flow control focuses on the

reduction of these instabilities using active (non-zero energy cost) or passive (zero energy

cost) methods. This research examined passive flow control using phononic crystals placed

underneath the surface. A phononic crystal is a periodic material formed by the repeated

spatial arrangement of a unit cell33,34. The unit cell exhibits a band structure that relates

the frequency to the wavenumber of elastic waves traveling across the phononic crystal as

a whole. Among the features of a band structure that is widely used in phononic-crystal
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FIG. 4: Wavenumber, amplitude, phase and performance metric curves vs. frequency for a

phononic subsurface design labeled Design A.

applications is the presence of band gaps (frequency ranges were waves are prohibited from

propagation35. In the context of flow control, our previous research has demonstrated that

within a stop band, not only the waves are prohibited from propagation, but their phase

changes in a robust manner, i.e., independent of the boundary conditions. When combining

this effect to the tuning of the finite phononic crystal resonance response, we have shown

that it is possible to use this mechanism for passive stabilization of a laminar flow exhibiting

a growing Tollmien-Schlichting (TS) instability17.

As shown in figure 4, the effect of a particular phononic subsurface design over a large

frequency range varies significantly depending on the layering of individual materials within

8DISTRIBUTION A: Distribution approved for public release.
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FIG. 5: Streamwise spatial distributions of the kinetic energy of the disturbance field

within the bottom half of the channel; the dotted lines represents the base model (i.e.,

with no control) and the continuous lines represent the model with the phononic crystal.

The plotted quantity represents the spatial intensity of the flow instability.

the unit cell. Despite the material system as a whole being composed of only two constituent

materials (ABS polymer and aluminum), the number of layers as well as the volume fraction

of each constituent material may be modified freely. Hence optimization studies can be per-

formed to tuning these phononic subsurfaces to suppress the turbulence mechanisms. Our

research aims to produce an optimized phononic subsurface structure which significantly

reduces both turbulent kinetic energy and drag in turbulent channel flow.

Prior to investigating the turbulence problem, it is important to examine the effects

of large amplitude disturbances since these bring rise to nonlinear effects. To examine the

ability of a phononic subsurface to counter large-amplitude instabilities, we conducted cou-

pled fluid-structure direct numerical simulations where we introduced an initial excitation

wave incorporated as a spatially evolving disturbance in a fully-developed plane Poiseuille

(channel) flow driven by a mean pressure gradient. The channel is formed by parallel walls
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at the bottom and at the top with periodic boundary conditions applied in the spanwise

z-direction, and a buffer (sponge) layer is used to model the outflow. In the fluid part of

the coupled model, the base flow is an exact solution of the Navier-Stokes equation. We

superimposed an unstable spatial solution (eigenfunction) of the Orr-Sommerfeld equation

at the inflow boundary of the channel to excite the parabolic base velocity, faithfully mod-

eling the conditions in typical laboratory experiments. We consider water as the working

fluid, a Reynolds number Re = 7500, and a non-dimensional unstable frequency ωR = 0.25

(i.e. 1690Hz). In the solid domain, the Newmark scheme was used for the time integra-

tion. The unit cell of the phononic crystal configuration considered was again composed of

aluminum and ABS polymer. The density, ρs and Youngs modulus, Es, for each of these

two constituent materials are: ρAl = 2700 Kg/m3, ρABS = 1040 Kg/m3, EAl = 68.8 GPa,

EABS = 2.4 GPa. Both the structure and the fluid equations are inverted separately and a

conventional serial staggered approach is used to couple the interface between the two.

The streamwise evolution of selected modal contributions of perturbation kinetic energy

(KE) is shown in Fig. 5(a). Compared to the reference all-rigid-wall case (dashed lines),

it is observed that the perturbation KE decreases across the length of the phononic crystal

interface for the primary mode (blue). However, this effect is reversed for the three other

modes presented and may be explained by nonlinear interactions. This reversed effect is

somewhat negligible, however, owing to the difference in the orders of magnitude of the

modal energies. By only stabilizing the primary mode, we show a reduction of maximum

8% in the total perturbation kinetic energy (summed over all modes) as shown in Fig.

5(b). These results demonstrate the ability of the phononic crystal to stabilize the three-

dimensional flow field [the type exhibited by flows undergoing secondary (K-type) transition]

via frequency-dependent wave interferences, even in the presence of large-amplitude, non-

linear disturbances.

II. COMPUTATIONAL METHOD

Direct simulations are important to the scientific community because of the detail they

offer into the dynamics of a flow. Near boundaries a fine mesh is required to capture

the smallest scales of turbulent motion. In many instances, DNS allows monitoring of

10DISTRIBUTION A: Distribution approved for public release.



FIG. 6: Diagram of turbulent channel flow with rotation in the spanwise direction.

flow variables closer to the wall than experimentation. DNS is the ideal tool to use in

problems dealing with flow control, where very precise calculation of the near-wall dynamics

is critical. Other methods, such as Reynolds Averaged Navier-Stokes (RANS) and large-

eddy simulations (LES), while able to capture the large scales in the problem, are unable to

resolve smaller scales of turbulence. The use of DNS bypasses this problem, but at a much

higher cost of computational resources.

A. Numerical Algorithm and Parallel Architecture

For the problems described above, we incorporate a semi-implicit finite difference method

to solve the incompressible Navier-Stokes (N-S) equations. The nonlinear advective terms

are solved using a second-order time and fourth-order spatial variant of the Adams-Bashforth

explicit time integrator. Diffusive terms are solved using a variant of the implicit Crank-

Nicholson method (also second-order in time and fourth-order space). A corrector step is

then applied to the predictor velocities to enforce zero divergence at the new time step. This

operation requires solving a Laplaces equation, at each time step. In summary, advancing a

solution one time step requires solving four linear systems for the fractional step velocities

and temperature and one Laplaces equation for the pseudo-pressure φ at the next time level.

The above algorithm was implemented using the PETSc libraries. Storage savings are

incorporated by only allocating storage for locally owned data on each process and the ghost

points from adjacent processes. Similarly, coefficients of linear systems are only saved for

local grid points. A sparse storage technique has been implemented to speed up computation

the solution of linear systems and save storage.
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The solution of the fractional step velocities and temperature field converge quickly using

the PETSc provided GMRES Krylov subspace solver. However, solving for the pseudo-

pressure involves a much stiffer system due to the full Neumann boundary conditions nec-

essary at the rigid boundaries of the domain for the incompressible N-S equations. The

singularity of the system is addressed by removing the null space from the solution.

Two main versions of the code were created: a doubly-periodic channel code with periodic

boundary conditions in the streamwise and spanwise directions, and a streamwise spatial

code with a periodic spanwise direction. The spatial code was modified for an Ekman layer

or channel through a simple adjustment of the boundary conditions.

III. SUMMARY

The objective of this research was to investigate in detail the dynamics of turbulence

in simple and complex turbulent flows, primarily with regards to understanding the contri-

butions of coherent structures to the turbulence generation cycle and the ability of closure

models to accurately approximate turbulence. In ascertaining the interactions and roles of

energetical structures as well as their relationships with intercomponent energy transfer and

overall turbulent kinetic energy, the underlying complex mechanisms behind turbulence are

now better understood. The examination of turbulence and heat transfer closures also as-

sisted this objective as in addition to attaining significant reductions of computational costs,

the understanding of intercomponent energy transfer and turbulence production is crucial

within model design and improvement. In parallel, we have applied passive flow control

by phononic subsurfaces on three-dimensional disturbances, exhibited by flows undergoing

secondary (K-type) transition, and demonstrated that this concept is successful even for

large-amplitude nonlinear instabilities. The next step in the research is to combine the two

thrusts and design phononic-crystal structures tuned for turbulent flow in order to realize

systemic suppression of targeted coherent structures.

The publications referenced in Refs. [5], [18], and [23] have been direclty funded by this

research.

∗ mih@colorado.edu
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